A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin.
نویسندگان
چکیده
Factors that control differentiation of presynaptic and postsynaptic elements into excitatory or inhibitory synapses are poorly defined. Here we show that the postsynaptic density (PSD) proteins PSD-95 and neuroligin-1 (NLG) are critical for dictating the ratio of excitatory-to-inhibitory synaptic contacts. Exogenous NLG increased both excitatory and inhibitory presynaptic contacts and the frequency of miniature excitatory and inhibitory synaptic currents. In contrast, PSD-95 overexpression enhanced excitatory synapse size and miniature frequency, but reduced the number of inhibitory synaptic contacts. Introduction of PSD-95 with NLG augmented synaptic clustering of NLG and abolished NLG effects on inhibitory synapses. Interfering with endogenous PSD-95 expression alone was sufficient to reduce the ratio of excitatory-to-inhibitory synapses. These findings elucidate a mechanism by which the amounts of specific elements critical for synapse formation control the ratio of excitatory-to-inhibitory synaptic input.
منابع مشابه
New players tip the scales in the balance between excitatory and inhibitory synapses
Synaptogenesis is a highly controlled process, involving a vast array of players which include cell adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts. This i...
متن کاملNeurexin-neuroligin adhesions capture surface-diffusing AMPA receptors through PSD-95 scaffolds.
The mechanisms governing the recruitment of functional glutamate receptors at nascent excitatory postsynapses following initial axon-dendrite contact remain unclear. We examined here the ability of neurexin/neuroligin adhesions to mobilize AMPA-type glutamate receptors (AMPARs) at postsynapses through a diffusion/trap process involving the scaffold molecule PSD-95. Using single nanoparticle tra...
متن کاملControl of excitatory and inhibitory synapse formation by neuroligins.
The normal function of neural networks depends on a delicate balance between excitatory and inhibitory synaptic inputs. Synapse formation is thought to be regulated by bidirectional signaling between pre- and postsynaptic cells. We demonstrate that members of the Neuroligin family promote postsynaptic differentiation in cultured rat hippocampal neurons. Down-regulation of neuroligin isoform exp...
متن کاملFunctional excitatory synapses in HEK293 cells expressing neuroligin and glutamate receptors.
The discovery that neuroligin is a key protein involved in synapse formation offers the unprecedented opportunity to induce functional synapses between neurons and heterologous cells. We took this opportunity recording for the first-time synaptic currents in human embryonic kidney 293 (HEK293) cells transfected with neuroligin and the N-methyl-d-aspartate or AMPA receptor subunits in a co-cultu...
متن کاملPostsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter.
Presynaptic and postsynaptic differentiation occurs at axodendritic contacts between CNS neurons. Synaptic adhesion mediated by synaptic cell adhesion molecule (SynCAM) and beta-neurexins/neuroligins triggers presynaptic differentiation. The signals that trigger postsynaptic differentiation are, however, unknown. Here we report that beta-neurexin expressed in nonneuronal cells induced postsynap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 38 شماره
صفحات -
تاریخ انتشار 2004